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Abstract 

We examine recent concerns that averaged learning curves can present a distorted 

picture of individual learning.  Analyses of practice curve data from a range of 

paradigms demonstrate that such concerns are well founded for fits of power and 

exponential functions when the arithmetic average is computed over participants.  We 

also demonstrate that geometric averaging over participants does not, in general, 

avoid distortion.  By contrast, we show that block averages of individual curves, and 

similar smoothing techniques, cause little or no distortion of functional form, while 

still providing the noise-reduction benefits that motivate the use of averages.  Our 

analyses are concerned mainly with the effects of averaging on the fit of exponential 

and power functions, but we also define general conditions that must be met by any 

set of functions to avoid averaging distortion.  
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Averaging is perhaps the most common statistical analysis technique used in 

psychological research today. Researchers average data to identify systematic 

relationships between noisy variables.  When the relationships being examined are 

ordinal the average is representative of its components.  However, modern 

psychological research has moved beyond the simple determination of orders. Instead, 

competing quantitative models of individual behaviour are tested by comparing their 

fits to data. Often, the models are complex and nonlinear. One of our aims here is to 

demonstrate that such models should not be compared on the basis of their fits to 

averaged data; under quite general conditions, the average function has a different 

mathematical form than its component functions. Even when the form of the 

component functions is preserved, the parameters of the average function may not 

equal the average of the parameters of the component functions.   

As early as 1892, Boas questioned the representativeness of averaged growth 

curves, and like concerns have been reiterated for a variety of learning curves (e.g., 

Bakan, 1954; Bahrick, Fitts & Briggs, 1957; Estes, 1956, 2002; Kling, 1971; Sidman, 

1952; Underwood, 1949). For example, Sidman showed that the average of a finite 

number of exponential functions could never be exactly exponential in form itself, if 

the rate parameters of the components differ.  Such results for closed-form functions 

are usually simple to prove – for instance, a similar result holds for the average of 

power functions. 

In the main, empirical analyses in psychology have ignored these problems, 

perhaps because they do not arise when only ordinal relationships are of interest, or 

when component functions are linear.  The potentially misleading effects of averaging 

may also have been ignored because of the lack of a clear and convincing 

demonstration that averaging can cause serious errors in conclusions about real 
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psychological data. After all, averaging distortions occurring in real data may be 

neither substantial nor theoretically misleading.  In particular, results such as 

Sidman’s (1952) – that an average of exponential functions couldn’t be exactly 

exponential – does not rule out the possibility the average might be close enough to 

exponential for practical purposes. 

Two surveys of skill acquisition data (Heathcote, Brown & Mewhort, 2000; 

Newell & Rosenbloom, 1981) have provided evidence that distortions due to 

averaging have lead to misguided theory development in psychology. In this paper we 

endeavour to augment the averaging literature by providing several results dealing 

with averages across different curves: (a) a simplified version of an established proof 

outlining exactly when arithmetic averages of any nonlinear function will be 

distortion-free; (b) Monte-Carlo simulations showing that averages of exponential 

functions can easily mislead model discriminations; and (c) re-analyses of published 

data sets demonstrating that averaging across curves can have strong effects in real 

psychological data.  Historically, the dangers of averaging have often been ignored, 

probably because the benefits of averaging are so enticing.  With this in mind, we also 

provide some more positive news for the uses of averaging, by showing: (c) that there 

are methods of averaging within curves that can result in little or no distortion, but 

still provide strong noise reduction benefits; and (e) the effect of these methods on 

published data sets. 

Our conclusions are directed most generally at any attempt to average 

nonlinear functions.  When the need arises to choose specific nonlinear functions for 

examples, we use exponential and power functions.  We chose these two functions 

because they are simple and well understood, and were naturally suggested by the 

results of Newell and Rosenbloom’s (1981) and Heathcote et al.’s (2000) studies.  We 
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focus on the most common form of averaging, arithmetic, but also address geometric 

averaging. 

Averaging Across Functions 

Initially, we will restrict our analyses to perhaps the most common form of 

averaging in empirical psychology: that performed across different functions.  

Averages across participants, across different experimental conditions, or across 

different items or stimuli all fall within this class.  Thomas and Ross (1980) define 

two properties that make averages representative of their components: functional 

isomorphism, and parameter averaging. An average is functionally isomorphic only 

when it has the same mathematical form as its components.  Functional isomorphism 

only makes sense if all component functions have the same form (e.g., they all belong 

to the same family of equations).  The second property, parameter averaging, extends 

functional isomorphism by requiring that the parameters of the average function equal 

the average of the parameters of the component functions.  Parameter averaging only 

makes sense when functional isomorphism holds.  Where both properties hold we will 

describe the average function as representative. 

A necessary and sufficient condition for an arithmetic average function to be 

representative is that its component functions, which may have an arbitrary nonlinear 

form, are linear in parameters that vary across components (see Appendix A).  All 

such linear functions can be expressed as a matrix multiplication function (assuming 

one can identify a suitable basis set for the response space).  For the most common 

case, y: Rk→R, this means that if y is to have a representative average, then it can be 

expressed as the inner product of a fixed parameter vector A with a k-vector-valued 

function of x, f(x,θθθθ) where θθθθ is a fixed vector of non-linear parameters.  So, any 
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function for which the arithmetic average will be representative may be expressed in 

the form: 

( ) ( ) ( ) ( )θθθ ,...,, 2211 xfaxfaxfaxy kk+++=  

Modern psychology is often concerned with nonlinear functions, and so, 

according to the result above, averages will not be representative, at least whenever 

their nonlinear parameters (θ) vary.  Exponential functions are an important example: 

whenever their rate parameters vary across different component curves, the average of 

those curves will not be exponential in form.  However, it may still be the case that 

the average function is close enough to an exponential form for empirical use.  

Whether or not an average across exponential functions is noticeably different from 

exponential form is a question that has received mixed answers in the psychological 

literature.  In a reply to concerns about averaging raised by Anderson and Tweeny 

(1997), Wixted and Ebbesen (1997) report little averaging distortion in the data of 

Wixted and Ebbesen (1991), as both individual and average retention functions from 

were better fit by power than exponential functions.  For averaged practice curves, 

Newell and Rosenbloom (1981) found that the power function provided a better fit 

than the exponential function in data from many paradigms.  Heathcote et al. (2000), 

in contrast, analysed unaveraged practice curves and concluded that the exponential 

function provided a better fit than the power function in every case. 

Analyses of Simulated Data 

In this section, we report the results of Monte-Carlo simulations aimed at 

reconciling the apparently contradictory results about the effects of averaging reported 

in the literature.  Anderson and Tweney (1997) used simulations similar to ours, but 

with important limitations. Define power and exponential functions as in Equations 1 

and 2 respectively, with y the criterion and x the predictor. The subscripts P and E are 
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used to differentiate the linear parameters for power and exponential functions 

respectively.  Where we drop the subscript, we mean the parameter to stand for either 

power or exponential function parameters, unless otherwise stated. Both functions 

have one nonlinear parameter, s for the power and r for the exponential: 

 
s

PP xbay
P

−+=   (1) 

rx
EEE ebay −+=   (2) 

Anderson and Tweney (1997) examined only two-parameter versions of the 

power and exponential functions, with a constrained to be zero in both cases. In the 

two-parameter case, geometric averaging1 provides an easy solution to averaging 

distortion – but one that cannot be extended to other functions in which the asymptote 

(a) parameters vary. Our simulations extend Anderson and Tweney’s work to the 

three-parameter case, use a variety of curve lengths and numbers of component 

curves, as well as varying linear parameters among components.  These extensions 

make our simulations a more accurate reflection of the situation in psychological 

research.  In all further descriptions, the exponential functions to be averaged (the 

“component functions”) will be specified as: xr
ii

iebay −+=E , where x=1, 2,…, M 

indexes the values of the covariate (e.g., experimental trials), and i=1, 2,…, P indexes 

the set of component curves to be averaged (e.g., participants).  For a description of 

the parameters and the numerical methods used, see Appendix B. 

Simulation Methods 

Simulation 1 averaged two (noiseless) exponential functions, both with ai=0, 

and determined whether the average curve was better described by an exponential or 

power function.  The spread of the component functions’ r parameters was 

manipulated until the point was found at which the average changed from being more 
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like an exponential function to being more like a power function.  Algorithmically, 

the largest of the two r values, r max, was fixed and a line search over the other r 

parameter, r min, was used to locate the value at which the sum-squared deviations 

from the power function were equal to those from the exponential.  We will call the 

value of the ratio r max: r min at the point where the average curve changed from more 

like an exponential to more like a power function the “distortion ratio”.  The 

distortion ratio provides a measure of the amount of difference in the rate parameters 

required for averaging to cause sufficient distortion to mislead inferences about 

functional form based on goodness-of-fit.  These simulations were repeated using 

many different combinations of r max and of M, although only two component 

functions were used in Simulation 1 (P=2). The bi parameters were constrained to be 

constant across component functions. 

Simulation 2 extended Simulation 1 by varying P between two and 20, 

mimicking the process of averaging across larger groups of participants or 

experimental conditions.  The value of r max was again fixed and a search performed 

over r min.  The values of the other r i were logarithmically2 spaced between rmax and 

rmin.  These simulations had essentially the same outcome as Simulation 1 (i.e., P=2).  

In fact, the level of distortion for a given r max: r min ratio with P>2 was always either 

the same as for P=2 or even greater than for P=2. 

Simulation 3 extended Simulation 2 by using component functions with 

values of ai > 0 and values of bi that varied across component functions (i.e., three 

parameter functions).  These simulations were designed to check whether using 

constant (and zero) asymptotes and constant bi values had restricted the results of the 

previous simulations.  Analysis was complicated by the non-zero ai parameters, which 
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necessitated the use of a nonlinear regression algorithm to fit the power and 

exponential functions at each iteration of the line search.  

The results of the simulations with ai > 0 and varying bi yielded the same 

outcome as the simulations with ai = 0 and bi fixed.  This result concurs with 

Anderson and Tweney (1997), who found that varying bi values had very little effect 

on averaging artefacts (they did not vary ai).  The agreement of results from 

Simulations 1 and 2 with the results from Simulation 3 also suggests that the use of 

the two different fitting algorithms (transformation and linear regression for the two-

parameter functions vs. nonlinear regression for the three parameter functions) did not 

produce different results.  This agreement is not trivial, since the two methods assume 

different error models: additive normal errors for the nonlinear regression and 

lognormal errors for the transformed linear regressions. 

Simulation Results 

The effect of manipulating component r values, while not varying much 

across the three sets of simulations, was more complex than might be expected.  A 

typical graph of the distortion ratio (i.e., the value of r max: r min at the point where 

distortion became strong enough to cause misidentification of the average curve) is 

shown in Figure 1 as a function of r max (solid line).  There are several important 

things to note from this graph.  Firstly, the value of the distortion ratio initially 

decreases as the value of r max decreases, indicating that less variability in r parameters 

is required to cause significant averaging distortion as the maximum rate parameter 

decreases.  Secondly, the distortion ratio achieves a minimum of approximately 10.  

That is, averaging can cause strong distortions when the difference between the 

maximum and minimum r parameters is only one order of magnitude.   
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--------------------------------- 
Insert Figure 1 about here 

--------------------------------- 

Perhaps the most surprising effect observed in the simulation results is the 

upturn in the low-r max section of Figure 1: this upturn occurred for every combination 

of parameters examined.  The distortion ratio initially decreases with decreasing r max 

but then reaches a minimum after which it rapidly increases to effectively infinite 

values.  This behaviour means that, for approximately r maxM<10, averaging 

exponential functions can never result in a curve that is better fit by a power function 

than an exponential function.  A simple graphical explanation of the no-distortion 

region of Figure 1 is that, when r maxM is quite small (and thus r minM is even smaller) 

all of the component functions are nearly constant.  Averaging any number of (nearly) 

flat lines with an exponential function will not greatly distort curve form. 

Re-Analyses of Published Data Sets 

To examine the impact of averaging on real psychological data, 17 data sets 

analysed by Heathcote et al. (2000) were re-analysed after arithmetic averaging across 

participants.  Figure 2 displays the results listed in order of the percentage of 

individual (unaveraged) curves better fit by the exponential.  The details of the 

methods, and the definitions of the labels used for each data set, are given in 

Appendix C.  There were many experimental conditions (between 8 and 260) in each 

data set, and data were not averaged over these – only across participants within 

conditions.  The results show that averaging over participants has strong and 

unpredictable effects on model selection.  Prior to averaging, all data sets showed a 

consistent preference for the exponential function (in 62% to 91% of cases the 

exponential provided a better fit).  In 7 of the 17 data sets, averaging over participants 
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decreased the preference for the exponential; 2 cases resulted in a strong preference 

for the power function.  

--------------------------------- 
Insert Figure 2 about here 

--------------------------------- 

For some data sets shown in Figure 2 averaging over participants increased 

rather than decreased preference for the exponential function. An explanation for this 

effect is that, as noise increases and dominates the underlying learning curve, both 

power and exponential functions will provide the best fit equally often. Although this 

assertion seems intuitively plausible, Myung Kim and Pitt (2000) reported a very 

strong bias whereby the power function provided a better fit to purely random data 

than the exponential function in 99% of cases. Myung et al.’s simulations were 

limited to only single parameter power and exponential functions (i.e. where a and b 

were both fixed). Brown and Heathcote (accepted) replicated Myung et al.’s results, 

but when they extended the analysis to exponential and power functions with two 

parameters (only a fixed) and three parameters varying, they found equal preference 

in fits to random data.  Hence, in Figure 2, which reports the fit of three parameter 

power and exponential functions, averaging over participants may have increased the 

preference for the exponential function because it reduced noise, and so moved the 

results away from equal preference. 

The conclusion from these analyses is clear: arithmetic averaging yields 

unpredictable results, which may confound model comparison.  Importantly, there 

seem to be two competing forces at work, a distorting effect on functional form, and 

also a clarifying effect based on noise reduction.  When analysing only averaged data, 

it is difficult to know which of these two has dominated, and so conclusions about the 

nature of the unaveraged data are difficult to make.  Where issues of individual curve 
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form, and more generally the fit of any nonlinear model, are at stake, data should not 

be averaged across functions. 

Geometric Averaging 

Geometric averaging preserves the functional form of power and exponential 

data, but only when component curves have zero asymptotes. When the asymptote 

values are large relative to the range of the data, the logarithmic transformation is 

close to linear across that range, and so geometric averaging is similar to arithmetic 

averaging – and hence ineffective.  Subtracting asymptote estimates before geometric 

averaging is often not a practical solution to this problem, not only because the 

asymptote must be estimated, but also because zero and negative observations may 

result from the subtraction, due to noise3, in which case a logarithm is not defined.  

However, even when non-zero asymptotes are not corrected, it is possible 

that geometric averaging may result in averages that are close enough to 

representative for practical purposes.  We performed simulations to investigate this 

possibility by determining exactly how different from zero asymptotes have to be 

before geometric averaging is ineffective. When ai = 0, geometric averaging 

completely removed the bias towards the power function, as expected.  As ai 

increased this benefit decreased.  These effects are illustrated in Figure 3 as a function 

of the ratio ai/bi.  The ordinate in Figure 3 represents the difference in residual sum 

squares (RSS) between the best fitting power and exponential functions for arithmetic 

and geometric averages of exponential functions.  Large negative values indicate no 

distortion (the exponential fit has small RSS, the power fit has large RSS).  The origin 

of the ordinate axis represents the point at which model discrimination decisions 

would be reversed.   
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--------------------------------- 
Insert Figure 3 about here 

--------------------------------- 

Arithmetic averaging, for all values of ai/bi, causes distortion towards the 

power function.  For values of ai/bi less than about 0.3, geometric averaging was 

relatively effective in removing bias towards the power function.  At all values of ai/bi 

greater than this, the bias towards the power function was strong enough to reverse 

model discrimination choices made on the basis of RSS.  For values of ai/bi greater 

than approximately 0.5, the bias due to geometric averaging is almost as large as that 

due to arithmetic averaging.  This result suggests that geometric averaging provides 

no substantial benefit over arithmetic averaging, even when the ai parameters are quite 

small: only half as large as the bi parameters.  In real practice data, it is very common 

for component functions to have ai large relative to bi.  For example, in the many 

thousands of practice curves examined in Heathcote et al.’s (2000) survey, 51% 

yielded parameter estimates for which ai > bi. 

Averaging Within a Function 

Among others, Newell, Liu and Mayer-Kress (2001) have argued that 

averaging within curves (e.g., block averaging), like averaging across participants, is 

dangerous.  In their words:   

Learning trials are often blocked … to remove the presumed transient 

randomlike changes from trial to trial while emphasizing the persistent 

changes or the global trend of learning over trials.  The problem is that 

blocking data from groups of trials can modify or mask properties of 

the persistent trend as well as those of the transient changes.  In 

particular, this data analysis strategy reduces the evidence of rapid 

change in performance that is often present early in practice. (p. 59) 
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Block averaging is an example of the general class of data analysis tools 

often called “smooths” that have been much favoured in modern statistics.  As its 

name implies, a smooth is biased when it comes to rapid changes.  It is not true, 

however, that smoothing always changes the shape of “persistent trends” such as 

learning curves.  We will demonstrate that block averaging, and more general types of 

smoothing, have no effect on the shape of exponential functions, and that the bias 

induced for power functions is usually acceptably small. 

Consider the exponential functions defined in Equation 2, and suppose that 

the covariate x (e.g., practice trials) is measured in N blocks of M trials, so that 

x = 1, 2, …, NM.  Each point in the block-averaged series is defined as the arithmetic 

average of all points within the corresponding block of the raw data series, which 

yields Equation 3, where i is block number (i = 1, …, N): 

( ) ( )( )
∑

=

+−−⋅+=
M

j

jMire
M

baiy
1

11   (3) 

Equation 3 may be re-expressed as Equation 4: 

( ) rMi
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M
ebaiy −

=

− ⋅
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
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



⋅+= ∑

1

   (4) 

Thus, the block average is precisely an exponential function, except the scale 

parameter (b in Equation 2) is multiplied by a constant, and the rate parameter (r in 

Equation 2) is multiplied by M. The change in scale is linear and the change in the 

rate simply reflects a linear change in the units for the predictor (trials to blocks). 

Hence, there is no distortion of shape.  

Similar results hold for moving window smooths, at least when end-effects 

are neglected (end-effects can be very complex, see Wand & Jones, 1995, or Fan & 

Gijbels, 1996).  Thus, a simple boxcar smooth – the continuous generalisation of 

block averaging – or a more sophisticated weighted smooth will not change the 
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functional form of exponential functions.  Moving window smooths include as a sub-

case zero-order local polynomial regression (a Nadaraya-Watson smooth), at least for 

kernels with bounded support.  Given the exponential function in Equation 2, the 

moving window smooth with a kernel of width M is defined as: 

( ) ( )
∑

+−=

+−⋅+=
2

1
2

1
M

Mj

jxr
jew

M
baxy    (5) 

The wj are a set of weights (constrained to have sum M) and x is constrained 

to (M/2), …, (N-M/2), to remove end effects altogether.  Equation 5 can similarly be 

re-expressed as an exponential function in the same form as Equation 2: 

( ) rx

M
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
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
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Thus, the weighted moving window smooth of an exponential function is itself an 

exponential function with the scale parameter multiplied by the term in brackets in 

Equation 6, while all other parameters remain unchanged. 

These results hold only for the data structure described above, with regularly 

spaced covariate values (x = 1, 2, …).  This assumption is plausible for learning and 

memory curves, in which covariate values are most often set by design, but may be 

unreasonable in other paradigms.  If covariate values are subject to independent 

random variation, the effect on curve form will be small. However, covariate values 

sometimes vary systematically, with regions of high and low density.  In that case, if 

block averages or smooths are calculated as above (across blocks containing equal 

numbers of data points) serious distortion can occur: the factor in parentheses in 

Equation 6 would no longer be constant across the covariate.  With systematically 

variable covariate values, block averaging will be mostly harmless if averages or 
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smooths are instead calculated across fixed widths of the abscissa, so that the number 

of points in each block varies with covariate density.  With that method, the 

parenthetical term in Equation 6 represents the mean of a variable number of points.  

It will be relatively constant because those points simply represent more or less dense 

sampling from the same function (e.g., the mean of {1, 2, 3, 4, 5, 6} is not too 

different from the mean of {2, 4, 6}). 

The power function does not behave quite so tractably under block 

averaging.  In general, it is not the case that the block average of a power function 

will be a power function itself.  However, by applying results from the kernel 

smoothing literature, we can assure ourselves that the biases introduced by block 

averaging power function data will be small, given certain conditions.  Again we 

consider the continuous version of the block average, the boxcar smooth, for 

generality.  Ruppert and Wand (1994) and Bowman and Azzalini (1997) provide 

estimates for the expected bias of any kernel smooth, including the boxcar.  Assuming 

that the “true” regression function is a power function, the approximate (first order) 

pointwise bias for the boxcar smooth is ( ) 22
48
1 1 −−+ sxsbsM .  As Newell et al. (2001) 

anticipated, the greatest bias occurs at the start of the series, because that is where 

curvature is greatest, but it rapidly diminishes to zero towards the tail of the series (as 

x→∞).  This bias will be small relative to the criterion values, as long as small enough 

values of M are chosen. For the particular case of power-exponential comparison, the 

block average of a power function will be, if anything, less like an exponential 

function than the raw data4. 

Re-Analyses of Published Data 

Figure 4 shows the effect of block averaging on exponential versus power 

function discrimination in practice data analysed by Heathcote et al. (2000).  Each of 
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the 17 un-averaged data sets from the practice law survey was re-analysed after 

averaging over blocks.  Both short and long block averages were used for each 

individual series, with the actual block lengths dictated by the design of the 

experiment and ensuring that each series had a reasonable number of points after 

averaging (see Appendix C for details).   

--------------------------------- 
Insert Figure 4 about here 

--------------------------------- 

The effect of block averaging was much smaller than the previously 

described effect of averaging over participants. In particular, preference for the 

exponential model was never reversed, although preference for the exponential was 

generally less than for the un-averaged case.  Usually, the increased averaging 

associated with longer blocks resulted in a greater decrease in preference for the 

exponential compared to shorter blocks.  The exceptions to these generalizations 

occurred mainly in data sets with weaker un-averaged preference, where block 

averaging sometimes increased preference for the exponential, and in one case (s2) 

long blocks caused a greater increase than short blocks.  Averages over participants 

were also calculated on block averages.  The effect on model selection was similar to 

that seen with the previous averages over participants (Figure 2), that is, large 

distortions were observed.  

Discussion 

Arithmetic averaging preserves the functional form of its components only 

under very strict conditions, and can have opposing effects on averages of noisy 

exponential functions. Where the individual curves’ rate parameters vary sufficiently, 

a bias toward the power function is created in the average.  Averaging can also reduce 

noise, so in some cases, a clearer preference for the exponential can emerge as the 
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deleterious effects of noise on model discrimination are attenuated.  In the data from 

Heathcote et al.’s (2000) survey (Figure 2, above), these effects appear to interact in 

complicated ways.  Consequently, researchers who rely on the average could be 

misled into concluding that different functional forms apply to different conditions or 

paradigms when the real cause is variation in the distribution of exponential learning 

rates. 

Geometric averaging cannot be relied upon to cure averaging distortion for 

power and exponential functions.  Geometric averaging attenuates the bias favouring 

the power over exponential functions only when asymptotic performance is less than 

one third of the scale of learning.  For practice curves, this condition is commonly 

violated.  Re-analysis of the practice data analysed by Heathcote et al. (2000) showed 

geometric averaging did not differ much from arithmetic averaging, and so it was 

largely ineffective at avoiding distortion.   

A much more optimistic picture emerged for block averages, and in general 

for “smooths” that aggregate data from contiguous trials.  Newell et al.’s (2001) 

concern about block averaging is unwarranted for exponential learning curves, and the 

bias for power functions is generally small for reasonable choices of smoothing 

parameters (e.g., block width).  Comparison of Figures 2 and 4 show that, for practice 

data, block averages produced much less distortion than averages over participants. 

All of the types of averaging examined here improved the goodness-of-fit 

for both exponential and power functions for the data of Heathcote et al.’s (2000) 

survey. For the raw data, the (unweighted) average R2 across data sets was .35 for the 

exponential and .31 for the power function.  For short block averages, the average R2 

was .61 for the exponential and .57 for the power function, and for long block 

averages the average R2 was .73 for the exponential function and .70 for the power 
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function.  In arithmetic averages over participants the average R2 was .70 for the 

exponential and .65 for the power function.  Hence, block averaging can be as 

effective in improving signal to noise ratio as averaging over participants.  

Consequently, block averaging can take advantage of the improvement in model 

discrimination that occurs with decreased noise while introducing no averaging 

distortion for the exponential, and very little averaging distortion for the power 

function.  

When we have reported our results on the potential distortion due to 

averaging over participants to colleagues, one of the first questions to arise regards the 

implications for the analysis of learning curves with repeated measures ANOVA. The 

answer to this question is complicated, and we can deal with it only briefly here.  

However, it can be definitely stated that the object of inference in ANOVA is the 

mean over participants, so any quantitative evaluation of the mean function’s shape, 

such as polynomial contrasts, can suffer from averaging distortion.  

The situation is often much worse than it need be: simple additivity, rather 

than linearity, is usually adopted as the structural model for the subjects’ effect in 

most repeated-measures ANOVA programs.  Additivity implies that each participant 

differs in location (e.g., asymptote), but exhibits the same change in performance 

from the beginning to end of learning, an erroneous assumption in our experience.  As 

shown in Appendix A, no averaging distortion occurs when participants’ curves differ 

in scale as well as location; it seems wasteful not to take advantage of this fact.  When 

only additivity is assumed, scale differences between participants are assigned to 

error, unnecessarily reducing the power of tests.  Scale differences can also induce 

spurious covariance between levels of the learning factor, which are commonly 

corrected by reducing degrees of freedom, at a further unnecessary cost to power. 
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Mandel (1963) provides the methods necessary to perform ANOVA allowing a full 

linear model for subjects’ effects. Heathcote, Mewhort and Brown (in preparation) 

have extended this approach to allow violations of the linear subjects’ effect model 

and hence the potential for averaging distortion, to be detected. 

The results presented here have implications for theories of learning, as well 

as for analysis of learning curves.  In many cases, measurement and design limitations 

mean that individual participant’s data are the result of a summation or averaging 

process.  In retention experiments, for example, individual participant retention 

probabilities are commonly obtained by averaging over a population of items.  If 

items have widely differing exponential rates of forgetting the “individual” retention 

curve can appear to have a power form (see Heathcote et al., 2000, for a discussion of 

this issue for practice theories).  The present results show that exponential component 

rates need differ only by an order of magnitude for a power function to provide a 

better fit to the average. In general, if a theory postulates that observed performance is 

the result of the summation or averaging of components that differ nonlinearly, the 

effects of summation or averaging must be taken into account in determining the 

theories’ predictions for performance.  Newell and Rosenbloom (1981) acknowledge 

just this possibility, and  Neves and Anderson (1981) provide such a theory, in which 

a supposed power function for individual practice curves is explained as resulting 

from the sum of a series of stages that learn exponentially. 

Our analyses focused on exponential functions because they are arguably the 

simplest plausible form for a learning curve; their shape is defined by a single 

nonlinear rate parameter, and any unobserved learning trials prior to an experiment 

(k) can always be absorbed into a linear scale parameter (e.g., ( ) rxrkkxr eee =+ )5.  Given 

that averages of exponential functions demonstrably produce marked distortions, the 
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situation will likely be worse for more complex nonlinear models.  For power 

learning, for example, prior practice introduces a second nonlinear parameter, so 

variations in prior practice among participants can increase averaging distortion.  In 

general, therefore, we concur with Massaro (1998) statement that if only averages are 

examined “…we might have an explanation for an average subject, but one that does 

not apply to any of the actual individuals making up the average.  Thus averaging may 

preclude the discovery of important properties” (p.132). 
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Appendix A: Representative Arithmetic Averages 

Theorem:  An arithmetic average of several component functions will have 

the same form as those components if and only if the component functions are linear 

in all parameters that vary across components. 

Proof:  A simple proof is presented below, but it’s essential idea has been 

known since at least 1821, when Cauchy published it; the interested reader is referred 

to Aczel (1966) for extensions (e.g., averages other than arithmetic).  Consider a set of 

P component dependent variables, y, that are all a real-valued function dependent on 

different k-dimensional parameter vectors, Ai and a vector of covariates, x (fixed for 

all i).  To prove sufficiency, assume that the functions, y, are linear in the parameter 

vectors, Ai, that is: 
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Note that the second property follows from the first, at least for rational K.  

The same is true for all real K by the usual limit argument, if the y are continuous. 

Under these conditions the arithmetic average (AA) of the y over the P parameter 

vectors will be representative: 
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To prove necessity, notice that the above chain of implications runs 

backwards also: the third expression follows from the fourth by invoking the 

additivity assumption, and the second follows from the third by invoking the scalar 

multiplication assumption (or the additivity assumption if the y are continuous). 
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Appendix B: Computational Details 

All simulations used scripts written by the authors in the S language 

(Becker, Chambers & Wilks, 1988).  Validation of nonlinear regression solutions was 

made using a program written by the authors in Pascal.  The primary nonlinear 

regression algorithm performed least-squares minimisation by implementing a quasi-

newton algorithm and an iterative approximation to the Hessian matrix.  Start points 

for searches for exponential and power function parameters were generated 

automatically by heuristics based on approximating asymptotes and then estimating 

the other parameters by linear regression, followed by grid-search around the 

estimates for robustness.  Minimisations to ascertain the distortion ratio were carried 

out using a golden-section line search, with starting points generated from the outputs 

of neighbouring searches.  When ai=0 for all i, linear least-squares regression after 

log-log transformation was used to determine the best-fitting power function and 

linear least-squares regression after log-linear transformation was used to determine 

the best-fitting exponential function. 

Four different values of M (30, 100, 300 and 1000) were used.  At each 

value of M, 10 values of rmax were used.  The values of rmax were chosen from the 

feasible range – those for which distortion was possible.  Choosing values of rmax for 

which no distortion was possible resulted in false convergence estimates in the search 

for the distortion ratio (as the objective function was relatively constant across 

different ratios).  The rmax values were chosen such that rmax M ranged from 

approximately 100 down to three in logarithmically spaced steps. 

In simulations 2 and 3, different numbers of curves were also averaged – 

either 2, 3, 4, 5, 7, 9, 12, 15 or 20 – representing averaging across different numbers 
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of participants.  A constant value of rmax was used for each curve in the average and 

values of r below rmax were logarithmically spaced between rmax and rmin. 
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Appendix C: Re-Analysed Data Sets 

Table A1 defines the labels used for data sets from Heathcote et al.’s (2000) 

survey. The “Short Blocks” and “Long Blocks” columns indicate the number of 

observations per block/number of blocks per participant. For the k1 and k2 data 

different block lengths were used for the two within-subject conditions. 

--------------------------------- 

Insert Table A1 about here 

--------------------------------- 

Ordinary least squares estimation was used to fit three parameter power and 

exponential functions with estimated asymptotes bounded below by zero. Note that 

the pre-averaging results in Figure 2 differ slightly from those reported in Heathcote 

et al. (2000) for two reasons. First, the numbering system used for the practice factor 

(N) labelled the first correctly answered trial occurring in each within-subjects 

condition as 1, the second correct trial as 2, and so on, rather than using the absolute 

trial number regardless of condition, as in Heathcote et al. Second, practice series 

were truncated to the length of the shortest practice series within a condition. This 

ensured that each participant contributed exactly one RT to each value in the averaged 

series. We found that other numbering systems that did not enforce this condition 

introduced substantial distortion into the average; for instance by allowing the tail of 

the series to be dominated by a single participant’s data. The disadvantage of this 

approach is that it discards some information about the tail of the practice function, 

and so may push the results towards no preference (50%). Comparison with 

Heathcote et al.’s Figure 1 shows that the effect of these changes was only slight.  

Note that all data sets that were fit separately for different response strategies in 
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Heathcote et al. were also fit separately here.  Grouped results are reported, treating 

algorithm vs. memory strategies as an extra within-subjects condition. 
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Tables 

Table A1: Labels, sources and block size/number of blocks for the 17 un-averaged 

practice data sets from Heathcote et al. (2000). 

Label Reference Experiment Long Blocks Short 
Blocks 

m1 Rickard, & Bourne (1996)  “OPER” Experiment 10/9 3/30 

m2 Rickard (1997) “CPL” Experiment 10/9 5/18 

m3 Reder & Ritter (1992) 
also Delaney, Reder, 
Staszewski & Ritter, 
(1998). 

Experiment 1 
 
4/5 2/10 

m4 As for m3 Experiment 2 4/5 2/10 

m5 
Schunn, Reder, 
Nhouyvanisvong, 
Richards, & Stroffolino 
(1997) , also Delaney, 
Reder, Staszewski & 
Ritter, (1998). 

Experiment 1, using only 
stimuli presented 28 times. 

4/7 2/14 

s1 Strayer & Kramer (1994a)  Consistently mapped trials 
from mixed consistent/varied 
mapping training blocks from 
Experiment 2 

48/15 24/30 

s2 Strayer & Kramer (1994a; 
1994b)  

Consistently mapped training 
blocks from Experiment 2 of 
(1994a), and Experiments 4, 
6, and 7 from (1994b), and an 
unpublished two-alternative 
forced-choice version of the 
task 

48/15 24/30 

s3 Strayer & Kramer (1994c) Consistently mapped trials 
(young participants). 

24/18 12/36 

v1 Heathcote & Mewhort 
(1993)  

Experiment 1 20/10 10/20 

v2 Carrasco, Ponte, Rechea 
& Sampedro (1998)  

 12/7 4/21 

v3 As for v1 Experiments 3 and 4 20/16 10/32 

k1 Verwey (1996)  Time to press each key taken 
separately – day 1 session 
only 

- 30/24 & 
10/12 
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k2 As for k1 Time to press each key 
taken separately – day 1 
session omitted due to 
non-stationary errors. 

- 30/53 & 
10/21 

c1 Palmeri (1997).  Experiment 1 16/13 4/52 

c2 As for c1 Experiment 2 16/10 4/40 

c3 As for c1 Experiment 3 8/10 4/20 

a1 As for m2 Alphabet Arithmetic task 12/7 4/21 
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Figure Captions 

Figure 1. Log-log plot of distortion ratio vs. rmax for a typical function set (two 

functions, length 100, a1 = a2 = 0, b1 = b2 = 5000). 

 

Figure 2. Percentages, over conditions and participants, of fits where a three-

parameter exponential function provided a better fit than a three-parameter power 

function in un-averaged data, and corresponding percentages, over conditions only, 

for fits to data arithmetically and geometrically averaged over participants. Note that 

where bars appear to be absent this indicates equal (50%) preference. 

 

Figure 3. Distortion levels due to arithmetic and geometric averaging of exponential 

functions.  The abscissa represents the ratio of the asymptote parameters of these 

functions to their scale parameters (ai/bi).  The ordinate represents the difference 

between residual sums of squares (RSS) for exponential and power function fits to the 

average curves.  Negative values indicate a better exponential fit, and positive values 

indicate a better power fit to averaged exponential function data. 

 

Figure 4. Percentages, over conditions and participants, of fits where a three-

parameter exponential function provided a better fit than a three-parameter power 

function in un-averaged data, and corresponding percentages, over conditions only, 

for fits to short and long block arithmetic averages. Note that only short blocks were 

used for the k1 and k2 data sets due to the design of the experiment. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Footnotes 

                                                 
1 The geometric average of {xi: i=1..n} is ( )








∑

=

n

i
ix

n 1

ln1exp . 

2 Logarithmic (rather than linear) spacing was used in keeping with the ratio 

definition of r-spacing used above. 

3 The asymptote estimates mean performance after extended practice. Consequently it 

is larger than many observed values later in practice. 

4 For y = bx-s and bias = kbx-(s+2) + O(x-(s+3)), where k =M2s(s+1)/48, the approximate 

block average power function is z = y + bias. The derivative of z, neglecting higher 

order terms, is ( )31 2' +−− −−= skbxzsxz , and so the approximate negative logarithmic 

derivative of z is ( )kxx
k

x
s

z
z

+
+=− 2

2' , which decreases faster than a hyperbolic 

function (the relative rate of a power function) as s > 0 and so k > 0. For an 

exponential function, in contrast, the relative rate is constant.  See Heathcote et al. 

(2000) for more details on relative learning rates.  

5 Note that it is this translation invariance of shape that allows local averages to 

exactly preserve the form of exponential functions.  


